数据存储产业服务平台

大数据时代:颠覆传统 异化核心竞争力

人类自从诞生以来就在源源不断地创造着数据,商业文明的发展自始至终都离不开对于数据宝藏的挖掘,在商业世界中,数据一直都不是什么新鲜的东西,但是当海量的数据积累所造就的“大数据”时代到来,经济的新的增量已经逐渐露出了面纱。

尽管数据挖掘的工作人类已经做了几十年,但是“大数据”与我们通常所说的“数据”还是有显著的不同。

1997年,一台名叫“深蓝”的计算机击败了当时的国际象棋冠军Garry Kasparov。2011年,另一台计算机Watson在广受欢迎的美国电视智力竞赛节目《Jeopardy!》再次战胜前几届的冠军。

这两件事很好地诠释了数据与大数据这两个不同的商业时代。诞生于数据时代的深蓝,通过将象棋的游戏规则转化为以0和1形式存在的算法,借助全新并行处理技术,计算可能的走棋结果,如今,几乎任何一台计算机都能够通过扫描数据库而将结构化查询与答案匹配起来。而在大数据相关技术的帮助下,Watson 则能够回答那些以人类说话方式提出的不可预测的问题,Watson 能够“读取”大量人类知识载体,包括百科全书、报告、报纸、书籍等。它以分析形式评估证据,假设应答结果,并计算每种可能性的可信度。它在数秒内提供一个最有可能正确的答案。另外,它在做这些工作时,速度和准确性都超过世界一流的人类对手。

大数据的迅速增长及相关技术的发展正在带来全新的商业机遇。据《麻省理工学院斯隆管理评论》和IBM商业价值研究院联合举行的2011年新智能企业全球高管调查和研究项目指出,绝大多数企业都已抓住了这些机遇。2011年,58%的企业已经将分析技术用于在市场或行业内创造竞争优势,而2010年这一比例仅为37%。值得注意的是,采用分析技术的企业持续超越同行的可能性要高两倍。

对于任何企业来说,数据都是其商业皇冠上最为耀眼夺目的那颗宝石。伴随着传统的商业智能系统向纵深应用的拓展,商业决策已经越来越依赖于数据。然而,传统的商业智能系统中用以分析的数据,大都是企业自身信息系统中产生的运营数据,这些数据大都是标准化、结构化的。事实上,这些数据只占到了企业所能获取的数据中很小的一部分——不到15%。

通常情况下,企业的数据可以分为3种类型:结构化数据、半结构化数据和非结构化数据。其中,85%的数据属于广泛存在于社交网络、物联网、电子商务 等之中的非结构化数据。这些非结构化数据的产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。企业用以分析的数据越全面,分析 的结果就越接近于真实。大数据分析意味着企业能够从这些新的数据中获取新的洞察力,并将其与已知业务的各个细节相融合。

在沃尔沃集团,通过在卡车产品中安装传感器和嵌入式CPU,从刹车到中央门锁系统等形形色色的车辆使用信息,正源源不断地传输到沃尔沃集团总部。 “对这些数据进行分析,不仅可以帮助我们制造更好的汽车,还可以帮助客户们获取更好体验。”沃尔沃集团CIO Rich Strader说。

现在,这些数据正在被用来优化生产流程,以提升客户体验和提升安全性。将来自不同客户的使用数据进行分析,可以让产品部门提早发现产品潜在的问题, 并在这些问题发生之前提前向客户预警。“产品设计方面的缺陷,此前可能需要有50万台销量的时候才能暴露出来,而现在只需要1000台,我们就能发现潜在 的缺陷。” Rich Strader说。

在美国最大的医药贸易商McKesson公司,对大数据的应用也已经远远领先于大多数企业,将先进的分析能力融合到每天处理200万个订单的供应链业务中,并且监督超过80亿美元的存货。

对于在途存货的管理,McKesson开发了一种供应链模型,它根据产品线、运输费用甚至碳排放量而提供了极为准确的维护成本视图。据公司流程改造副总裁Robert Gooby说,这些详细信息使公司能够更加真实地了解任意时间点的运营情况。

Gooby解释说:“但是,大多数模型旨在简化物理世界,而这个模型极为复杂,并且包含我们的现实世界的全部数据。它允许我们量化业务运作的根本性变化所产生的影响的细节。这个模型并不是一种简化版。”

McKesson利用先进分析技术的另一个领域是对配送中心内的物理存货配置进行模拟和自动化处理。评估政策和供应链变化的能力帮助公司增强了对客户的响应能力,同时减少了流动资金。总体来讲,McKesson的供应链转型使公司节省了超过1亿美元的流动资金。

同样对大数据情有独钟的,还有中国移动集团山西有限公司,通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。

“全面获取业务信息非常重要,有时候甚至能颠覆常规分析思路下做出的结论。” 中国移动集团山西有限公司业务支撑系统部经理王峰说。比如,一个客户使用最新款的诺基亚手机,每月准时缴费、平均一年致电客服3次,使用WEP和彩信业 务。如果按照传统的数据分析,可能这是一位客户满意度非常高、流失概率非常低的客户。事实上,当搜集了包括微博、社交网络等新型来源的客户数据之后,这位 客户的真实情况可能是这样的:客户在国外购买的这款手机,手机中的部分功能在国内无法使用,在某个固定地点手机经常断线,彩信无法使用——他的使用体验极 差,正在面临流失风险。

“我们正在打破传统数据源的边界,更加注重社交媒体等新型数据来源。通过各种渠道获取尽可能多的客户反馈信息,并从这些数据中挖掘更多的价值。”王峰说。

社交网络、移动互联网、企业信息化在最近这几年中都得到了迅猛的发展,不断产生的海量数据将越来越影响企业从战术到战略制定的各个方面,这是一个巨大的挑战,当然更是机遇,因为在大数据的背后,将是IT厂商跨越到商业智能的绝佳机会。

IBM当年之所以完成从PC厂商开始向商业智能服务商的成功转型,一个重要的原因就是其较早预见到了大数据的商业机遇并果断布局。纵观IBM近5年 10亿美元以上级别的大手笔收购多与如何有效处理大数据有关。2007年,IBM花费20亿美元收购了商务智能软件供应商Congnos;2009年7 月,IBM斥资12亿美元收购SPSS软件,这是一家集数据整理、分析功能于一身的统计分析软件;2010年9月,IBM以17亿美元的代价将数据库分析 供应商Netezza收之麾下——自2005年以来,IBM投资160亿美元进行了30次与大数据有关的收购。这一系列布局,为IBM业绩带来了稳定高速 的增长。2012年,IBM股价突破200美元大关,累计涨幅超过9%,3年之内股价翻了3倍。

同样在抢占大数据蛋糕份额时占据先机的还有甲骨文。面对越来越多的海量数据所带来的商业潜力,甲骨文的策略是在2011年的OpenWorld大会 上推出了Oracle大数据机和Exalytics商务智能服务器,构建自己的大数据平台解决方案。除此之外,早在2008年,甲骨文就花费33亿美元收 购商业智能解决方案提供商海波龙(Hyperion),2009年以74亿美元巨资鲸吞另一家IT巨头SUN公司。

而在大数据实时分析的领域中,SAP也不甘人后。2011年SAP推出了HANA平台以应对大数据实时分析的挑战。和IBM、甲骨文这些对手一 样,SAP也一直没有停止通过大手笔的收购在大数据领域进行战略布局。2007年,SAP花费68亿美元收购全球商业智能软件霸主Business Object,2010年5月,SAP以58亿美元的代价并购数据库厂商Sybase。围绕着大数据的这些大手笔的战略布局也让SAP收到了回 报,2011年,SAP全年利润翻番,达到34亿欧元,造就了该公司40年历史上最好的业绩。

此外,EMC、Informatica、Taredata等公司,也都是大数据领域不可忽略的势力。

正在异化的核心竞争力

大数据时代,一些传统的商业思想正在被颠覆。这其中最为重要的,就是必须将数据作为企业的核心资产。

在进入大数据时代之前的漫长的商业社会进化过程中,企业脱离于人才而单独存在的智商基本是零,也正因为如此,人才变得异常重要,并一度被视为企业的核心竞争力—— 一方面,企业的智商被分布存储在这些人才的大脑中;另一方面,企业需要借助人才的商业智商,提升自身的企业智商。一定程度上,企业智商的高低,完全取决于人才的商业智商。

与此同时,由于企业智商被分布存储于人才的大脑中,信息的分享与价值挖掘受到极大制约,很难完全发挥。

在大数据时代,人才固然重要,却并非企业智商最重要的载体——数据才是企业智商真正的核心载体。这些能够被企业随时获取的数据,可以帮助和指导企业全业务流程的任何一个环节进行有效运营和优化,并帮助企业做出最明智的决策。在大数据时代的企业智商,才是真正被企业全部掌控的智商,而这一切的基础就是形形色色的数据。

IDC在其关于大数据的报告中指出,领军企业与其他企业之间最大的差别在于新数据类型的引入。那些没有引入新的分析技术和新的数据类型的企业,不太可能成为其行业的领军者。

在大数据时代,商业世界就如同飘浮在数据海洋上的巨轮,作为商业世界中的个体,企业要想做到游刃有余就必须如熟悉水性一般熟悉和用好海量的数据。大数据在重新定义企业智商的同时,对企业核心资产也进行了重塑。在过去,衡量企业最重要的资产无外乎土地、流动资金和人才等几个要素,如今,数据作为企业一项更加重要的资产将直接关系到企业的发展潜力。

在完成对企业智商和核心资产的重塑之后,数据资产正在当仁不让地成为现代商业社会的核心竞争力。与其他行业相比,互联网行业已经提早感受到了大数据对商业带来的深切变化。当很多企业还在因为大数据对商业世界的变革无所适从时,一些互联网企业已经完成了核心竞争力的重新定义,正在这些互联网企业身上发生的变化,一定程度上恰恰是其他企业在大数据时代的未来。

“5年前我们就建立了大数据分析平台。在这个平台上,可以将结构化数据和非结构化数据结合在一起,通过分析促进eBay的业务创新和利润增长。”eBay分析平台高级总监Oliver Ratzesberger告诉《商业价值》记者。

现在,eBay的分析平台每天处理的数据量高达100PB,超过了纳斯达克交易所每天的数据处理量。为了准确分析用户的购物行为,eBay定义了超过500种类型的数据,对顾客的行为进行跟踪分析。

在早期,eBay网页上的每一个功能的更改,通常由对该功能非常了解的产品经理决定,判断的依据主要是产品经理的个人经验。而通过对用户行为数据的 分析,网页上任何功能的修改都交由用户去决定。“每当有一个不错的创意或者点子,我们都会在网站上选定一定范围的用户进行测试。通过对这些用户的行为分 析,来看这个创意是否带来了预期的效果。” Oliver Ratzesberger说。

更显著的变化反应在广告费上。eBay对互联网广告的投入一直很大,通过购买一些网页搜索的关键字,将潜在客户引入eBay网站。为了对这些关键字 广告的投入产出进行衡量,eBay建立了一个完全封闭式的优化系统。通过这个系统,可以精确计算出每一个关键字为eBay带来的投资回报。通过对广告投放 的优化,自2007年以来,eBay产品销售的广告费降低了99%,顶级卖家占总销售额的百分比却上升至32%。

另一家电子商务巨头亚马逊也提早进入了大数据时代,亚马逊CTO Werner Vogels在Cebit上关于大数据的演讲,向与会者描述了亚马逊在大数据时代的商业蓝图。长期以来,亚马逊一直通过大数据分析,尝试定位客户和和获取 客户反馈。“在此过程中,你会发现数据越大,结果越好。为什么有的企业在商业上不断犯错?那是因为他们没有足够的数据对运营和决策提供支持。” Vogels说,“一旦进入大数据的世界,企业的手中将握有无限可能。”

国金证券在其发布的大数据系列报告中提出了大数据时代应用软件互联网化,行业应用垂直整合和数据成为核心资产等3个主要的趋势,其中最为值得注意的 就是在传统操作系统,数据库平台软件同质化趋势日趋明显的背景下,未来越靠近最终用户的企业将在产业链中拥有更大的发言权。而且企业如何通过抓住用户获取 源源不断的数据资产将会是一个新的兵家必争之地。

人们对于数据资产的迷恋体现在方方面面。例如,诚实地说,除了目前还不能算是十分完善的广告系统之外,Facebook在商业模式的探索上并不成 熟,但这并不妨碍它获得超过1000亿美元的估值。尽管短期来看Facebook的股价会有较大波动,但是更多人还是相信其长期利好,其中一个重要的原因 就是Facebook手中掌握着8.5亿用户每天产生的海量数据,这些数据早晚会通过一个恰当的方式释放出商业价值,不断产生的数据本身就是 Facebook最重要的资产。

而奥巴马政府对于大数据的看法则从一个侧面凸显了数据在今天的重要程度。

今年3月22日,奥巴马宣布以2亿美元投资大数据领域,在次日的电话会议上,美国政府将数据定义为“未来的新石油”,美国政府认识到了一个国家拥有 数据的规模,活性及解释运用的能力将成为综合国力的重要组成部分,未来对数据的占有和控制甚至将成为继陆权、海权、空权之外另一个国家核心资产。国家如 此,作为天生需要靠数据驱动财务增长的企业来说更是如此。

商业的发展历史并不是一个存在于人们头脑中虚无缥缈的概念,相反,它是一个不断演变和进化的生态系统。纵观历史上和现在的那些百年企业,他们的共同 特点就是在于面对持续发生变化的商业环境,他们在成长的过程中比其他企业拥有更为强大的进化能力,能够及时调整自己的战略布局以适应不断变化着的商业生 态。

例如,100年前,诺基亚还是一家芬兰的木浆造纸和橡胶生产公司,20世纪60年代开始,它抓住了全球电信行业发展的机遇,从生产电缆到经营电信网 络再到制造手机终端,随着商业生态的变化不断地进化,在移动互联网到来严重冲击其手机业务的情况下,诺基亚再次开始了其向智能终端的进化和转型。

又如,20世纪60-80年代,IBM还是全球最大的个人电脑公司之一,但是进入新世纪之后个人电脑的利润越来越微薄,IBM开始果断出售自己的 PC业务,开始向解决方案提供商转化,作为一家员工过万的超大型企业,IBM涅 重生的关键就在于其善于审时度势,持续不断地进化能力。

今天的大数据时代,让商业的生态环境在不经意间发生了巨大的变化:网民和消费者的界限正在变得模糊,无处不在的智能终端,随时在线的网络传输,互动 频繁的社交网络让以往只是网页浏览者的网民的面孔从模糊变得清晰,对于企业来说,他们第一次有机会进行大规模的精准化的消费者行为研究;作为保持着持续变 革欲望的企业,主动地拥抱这种变化,从战略到战术层面开始自我的蜕变和进化将会让他们更加适应这个新的时代。

未经允许不得转载:存储在线-存储专业媒体 » 大数据时代:颠覆传统 异化核心竞争力